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Liquidity Management in High Value Payments Systems

High-value payments systems are part of the core financial infrastructure; settle

transactions between large financial institutions

Problem:

For banks: managing liquidity is costly and can be challenging

For the central bank: ensure the safety and efficiency of the system

Questions

1. Can machine learning find solutions to the liquidity management problem?

2. Could these solutions be a guide for financial institutions and the central bank?
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Machine Learning and Liquidity Management

Objective: approximate the policy rules of banks participating in a HVPS using

Reinforcement Learning (RL)

• We consider the problem of approximating the best-response functions of banks

interacting in a high-value payments system to model their behavior

• Understanding the behaviour of HVPS participants can assist us in two ways:

1. Ensuring safety and efficiency of payments systems.

2. Help designing new payments systems
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Method: Reinforcement learning (RL)

RL is a computational approach to automate learning from interacting with the

environment

• RL train payment system participants to behave optimally in sequential decision

tasks mapping observations of the environment to action choices

• In our environment RL agents interact in the payment system to learn policy

functions to reduce cost of processing their payments by choosing:

1. The amount of initial liquidity

2. The rate at which to pay intraday as the demands arrive from clients

Key result

Agents trained with RL learn the optimal policy which minimizes the cost of

processing their individual payments 3
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Payments System Environment



Environment: Real-time gross settlement system (RTGS)
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Environment: Beginning of the day

At t = 0: Available collateral B

Decision

allocate share x0 ∈ [0, 1]

Liquidity allocation

`0 = x0 · B

Cost of initial liquidity

rc · `0
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Environment: Intraday

From t = 1, ...,T − 1: Agent receives payment demands Pt from clients

Decisions

send share xt ∈ [0, 1]

Liquidity constraint

Ptxt ≤ `t−1

Liquidity evolves

`t = `t−1 − Ptxt + Rt

Cost of delay

Pt(1− xt) · rd
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Environment: End-of-day

At t = T : Borrow from central bank if necessary

Payment demand

PT

End-of-day shortage

`b = PT − `T−1

Cost of borrowing

rb · `b

The total cost per episode:

R = rc · `0 +
T−1∑
t=1

Pt(1− xt) · rd + rb · `b
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Reinforcement Learning



Reinforcement Learning
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RL: In the context of payments system
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RL: Value functions

is formalized via policies π:

π : S → ∆(A)

The value of being at state s when following policy π:

V π(s) = Ea∼π(s)

R(s, a)︸ ︷︷ ︸
cost

+ γ︸︷︷︸
discount factor

E s ′ ∼ P(s, a)︸ ︷︷ ︸
Next-state distribution

V π(s ′)


Agent wants to find π∗:

π∗ := arg max
π

V π
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RL: REINFORCE

Given a start state s0 and policy parameters θ, we can define:

J(θ) := V πθ(s0)

and update parameters using stochastic gradient descent:

θ ← θ + α∇J(θ)

We can sample trajectories τ := 〈s0, a0, . . . , sT−1, aT−1〉 from πθ

and use the policy gradient theorem:

∇J(θ) = Eτ∼πθ

T−1∑
t=0

∇θ log πθ(at |st)R(st , at).
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Learning Setup & Results



Learning setup

Objective of the agent is to minimize the cost of processing payments:

R = collateral opportunity cost + delay cost + borrowing cost from central bank

Two separate training exercises:

– Learn the initial liquidity decision

– Train the intraday payment decision

Two experiments:

– 2-period scenario to check solution (think morning/afternoon payment cycles)

– 12-period scenario with real data (think hourly cycles)
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Learning Setup: Initial liquidity decision

• State space: Agent observes the entire vector of intraday payments demands

• Action space: xt ∈ {0, 0.05, 0.1, ..., 1}, a fraction of available collateral (xt ·B)

• Intraday action: Send as much as possible

• Total cost:

R = rc · `0 +
T−1∑
t=1

Pt(1− xt) · rd + rb · `b

We choose parameters with the relationship: rc < rd < rb,

where rc = 0.1, rd = 0.2, rb = 0.4

14



Results: 2-period initial liquidity decision

Dummy payment demands: PA = [0, 0.15], PB = [0.15, 0.05]
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Payments demand from LVTS

Description of real data:

• Normalized hourly aggregate payments observed between two LVTS participants

• Sample size: 380 business days between January 02, 2018 and August 30, 2019
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Results: 12-period initial liquidity decision
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Learning setup: Intraday payment decision

12-Period scenario with known analytical solution:

• Initial liquidity: Provide enough liquidity —at no cost— to settle all demand

• State space: Period, liquidity, new payments demand, total payments demand

• Action space: xt = {0, 0.05, 0.1, ..., 1}, fraction of payments demand (xtPt)

• Total cost: Processing cost per-episode

R =
T−1∑
t=1

Pt(1− xt) · rd , rd = 0.2
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Results: Intraday payment decision
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Results: intraday payment decision

Evolution over the training process of the intraday payment choices xt (first 4-periods)
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Robustness

Learning is robust to several variations in training setup

1. Learning rates, network setup and batch sizes

2. Different payment profiles

3. Costs, in particular delay cost:
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Conclusions

Main result:

RL agents learn policies that minimize/reduce the cost of processing payments,

promising to explain behaviour and design future payments systems

Next steps:

1. Joint training of the initial liquidity and intraday payment decision

2. Indivisible payments: motive for strategic delay

3. Intraday liquidity market: additional decision rule

4. Simultaneous training of larger number of agents
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Thank You!
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